
Dyalog
Release Notes

Dyalog version 18.0

The tool of thought for software solutions

Dyalog is a trademark of Dyalog Limited
Copyright © 1982-2020 by Dyalog Limited
All rights reserved.

Dyalog Release Notes

Dyalog version 18.0
Document Revision: 20240212_180

Unless stated otherwise, all examples in this document assume that ⎕IO ⎕ML ← 1

No part of this publication may be reproduced in any form by any means without the
prior written permission of Dyalog Limited.

Dyalog Limited makes no representations or warranties with respect to the contents
hereof and specifically disclaims any implied warranties ofmerchantability or fitness
for any particular purpose. Dyalog Limited reserves the right to revise this publication
without notification.

email: support@dyalog.com
https://www.dyalog.com

TRADEMARKS:

SQAPL is copyright of Insight Systems ApS.
Array Editor is copyright of davidliebtag.com
Raspberry Pi is a trademark of the Raspberry Pi Foundation.
Oracle®, Javascript™ and Java™ are registered trademarks of Oracle and/or its
affiliates.
UNIX® is a registered trademark in the United States and other countries, licensed
exclusively through X/Open Company Limited.
Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.
Windows® is a registered trademark ofMicrosoft Corporation in the United States
and other countries.
macOS® and OS X® (operating system software) are trademarks of Apple Inc.,
registered in the U.S. and other countries.

All other trademarks and copyrights are acknowledged.

iii

Contents

Chapter 1: Highlights 1
Key Features 1
Introducing Configuration Files 4
Multi-line Session Input 7
Extension to Where 8
Extensions to Mix 8
Regex Variant Option 9

Serialising Namespaces 10
Load 12
LX 12

Bug Fixes 13
Announcements 14
System Requirements 15
Interoperability 16

Chapter 2: Configuration 21
Session Initialisation 21
File Associations 23
Configuration Parameters 23
New Configuration Parameters 25

Dyalog_NETCore 25
APL_TextInAplCore 25

Configuration Files 25
Run-Time Applications and Components 29

Chapter 3: Language Reference Changes 35
Language Changes 35
Atop 36
Beside 36
Bind 37
Constant 38
Over 38
Unique Mask 39
Partitioned Enclose 40
Case Convert 42
Date-time 43
Format Date-time 50

Chapter 4: Object Reference Changes 59

iv

ExecuteJavaScript 59
InterceptedURLs 59
WebSocketUpgrade 61

Index 63

Chapter 1: Highlights 1

Chapter 1:

Highlights

Key Features
Installation and Configuration

l Version 18.0 introduces platform-independent configuration files. See
Introducing Configuration Files on page 4.

l During installation, setup.exe associates a number of new file extensions
with the Dyalog APL Editor dyaedit.exe. See File Associations on page
23.

l A new feature is provided to instantiate code in the Session (⎕SE) when the
Dyalog program starts. See Session Initialisation on page 21.

Executing Source Code Files
l Version 18.0 provides the capability of launching the Dyalog program on
text files containing APL source code. This is achieved by two new
parameters which may be specified on the command-line. See Load on page
12 and LX on page 12.

.NET Core Bridge
l Under Microsoft Windows, Linux (including the Raspberry Pi) and macOS,
Version 18.0 includes a bridge to the .NET Core, providing APL developers
with access to a large and rapidly growing collection of APIs and
frameworks.

l The .NET Core bridge will be almost identical in functionality to the
existing bridge to the .NET Framework, which is only available under
Windows,. However, in Version 18.0 it still lacks some features, most
importantly the ability to encapsulate APL code as .NET Core assemblies.

l The .NET Core bridge is documented in the dotNET Core Interface Guide.
See Dyalog_NETCore on page 25.

Chapter 1: Highlights 2

New Language Features
l New monadic ≠ function. See Unique Mask on page 39.
l Version 18.0 introduces 3 new operators. See Atop on page 36, Constant on
page 38 and Over on page 38.

l New System Function ⎕C. This new function is intended to replace 819⌶
which is deprecated. See Case Convert on page 42.

l New system function ⎕DT. See Date-time on page 43.
l New I-beam function. See Format Date-time on page 50.

Improved Language Features
l ⎕JSON provides a new HighRank option to handle arrays with rank >1
automatically, and a new Dialect option that permits JSON5 extensions.

l ⎕NPUT provides a new NEOL option that specifies how embedded line
separators are treated.

l The Where function (monadic ⍸), which previously accepted only a
Boolean argument, has been extended to allow non-negative integers. See
Extension to Where on page 8.

l Partitioned enclose has been extended to permit empty result elements. See
Partitioned Enclose on page 40.

l Mix has been improved so that certain APL2 extensions which were
provided only when ⎕ML≥2 are now provided at all levels of ⎕ML. See
Extensions to Mix on page 8.

l ⎕S and ⎕R now have a Regex Variant option that can be used to disable
regular expression matching. See Regex Variant Option on page 9.

l The rules concerning the serialisation of arrays that contain external
references have been re-defined. See Serialising Namespaces on page 10.

Documentation Changes
l The Composition operator, which was previously described in terms of 4
forms has been renamed Beside (forms I and IV) and Bind (forms II and III).
Only the descriptions have been updated, the features and functionality
have not changed. See Beside on page 36 and Bind on page 37.

l The documentation for Run Time applications has been updated to take
advantage of the new configuration files. See Run-Time Applications and
Components on page 29.

Chapter 1: Highlights 3

UI Improvements
l The Session now permits multi-line input. See Multi-line Session Input on
page 7.

l The Editor now identifies:
o matching occurrences of the word under the caret (except the actual

instance under the caret)
o matching parentheses, brackets and braces
o all control words associated with the one under the caret (e.g. if the

caret is on :If, then :Else and :EndIf are highlighted)
l The Find/Replace Dialog box now has an option to move to the next
occurrence of the target string following a replace operation.

l The MO (Goto matching outline) keystroke, now includes nested control
words.

HTMLRenderer Changes
l The protocol for initiating a WebSocket has been improved to permit
manual control. See InterceptedURLs on page 59 and WebSocketUpgrade
on page 61.

l The HTMLRenderer provides a new method. See ExecuteJavaScript on
page 59.

l A number of other minor changes have been made to WebSocket events.

New Configuration Parameters
l There is a new parameter to select the .NET Core interface in place of the
.NET Framework. See Dyalog_NETCore on page 25.

Chapter 1: Highlights 4

Introducing Configuration Files

Background
The operating systems on which Dyalog APL has been available through the years
have used a variety of mechanisms for system configuration. Environment variables
have been available since the beginning, first under UNIX and later under
Microsoft DOS and IBM OS/2. For a while, INI files became the norm under
Microsoft Windows, and were briefly used by Dyalog APL before the Registry
replaced them.

Today, Dyalog APL for Windows relies on the Windows Registry for
configuration (but allows environment variables to override settings). Other
platforms mostly use environment variables, which in practice require a script
surrounding the invocation of the Dyalog program. Settings can also be provided
on the command line, but this cannot be done in the same way on all platforms,
and some platforms limit the length of a command line.

In order to simplify cross-platform deployment of applications, Version 18.0
introduces a new configuration mechanism based on JSON5 text files. This is a
superset of JSON which is easier to read and write, and allows the inclusion of
comments.

Benefits of Configuration Files
The key benefits of configuration files include:

l Configuration files are text-based, which means they can easily be managed
along with the source code for an application, using industry standard tools
for source code management and continuous integration.

l Application configuration files can be placed in application folders and
define all configuration settings that each application relies on.

l User configuration files can provide settings that are the same for all
applications. (Typically, these files will be used to configure the
development environment.)

l Configuration of the interpreter can be done in the same way on all
supported platforms.

l Version 18.0 also adds an option to allow Dyalog APL to be launched not
only on a binary workspace file, but also on a text file defining a function,
namespace or class. If a configuration file exists with the same name as the
loaded file (but with a .dcfg extension), it will configure the interpreter
for that use.

l Configuration files are easy to read, and to write by hand or using ⎕JSON,
which has been extended to support JSON5.

Chapter 1: Highlights 5

l Both application and user configuration files can cascade, overriding
settings defined in a more generic configuration file, simplifying the
configuration of components which share some configuration.

Current and Future Policy
The new configuration files work in exactly the same way on all platforms.

On non-Windows platforms, Version 18.0 will create and initialise a User
Configuration file ~/.dyalog/dyalog.180U64.dcfg (for a Unicode 64-bit
installation), and the default launch script will set the USERCONFIGFILE
parameter to enable it.

Under Windows, because the Windows Registry is a convenient and familiar
mechanism for maintaining user preferences, especially those relating to the IDE,
Version 18.0 continues to record user settings in the Windows Registry. As before,
the Configuration dialog reflects the Windows Registry settings and ignores
parameters defined in other ways.

The current expectation is that future releases will split the contents of the existing
Windows Registry between settings that configure the development environment
(which will remain in the registry) and settings that configure the interpreter
(which will be relocated to a user configuration file, similar to the one created for
Version 18.0 on non-Windows platforms).

Dyalog recommends that you immediately start using configuration files for all
run-time applications, and eliminate the use of the Windows Registry or
Environment Variables for this purpose.

Implementation
A configuration file is an optional text file containing configuration parameters
and values. It may cascade, i.e. it can extend (inherit) configuration values from
other configuration files, and supplement and/or override them.

Configuration files use JSON5 (a superset of standard JSON) syntax. These files are
portable across all systems supported by Dyalog.

Chapter 1: Highlights 6

Precedence
All existing mechanisms for configuration continue to be supported. The following
precedence table shows how configuration files have been inserted into the
existing precedence rules when a setting is defined in multiple places:

l Command-line settings override
l Application configuration file settings, which override
l Environment variable settings, which override
l User configuration file settings, which override
l Settings in the registry (Windows only), which override
l Built-in defaults

For further information, see Configuration Files on page 25.

Chapter 1: Highlights 7

Multi-line Session Input
Extended multi-line input is a new approach to handling multi-line statements in
the session. The details here are intentionally imprecise because the behaviour is
likely to change, and it is intended to be intuitive.

This new feature is optional and is controlled by the value of the Dyalog_
LineEditor_Mode parameter which by default is 0 (off). To enable the new
behaviour, you must set the parameter to 1.

Changes to the line editor
l Functions entered into the session with the Line (∇) Editor are syntax
coloured as a whole.

l the [] syntax to manipulate lines is deprecated. Instead, the IL and EL
keystrokes (see below) should be used.

Entry of control structures and multi-line dfns
Broadly speaking, if the interpreter detects an un-terminated control structure or
dfn on a single line of input it:

l Enters a new multi-line mode which accumulates lines until the control
structure or dfn is terminated.

l The completed block of lines is then executed as if it were a niladic defined
function.

In all cases:
l The session considers all related lines to be a group.
l Grouped lines are syntax coloured as a whole.
l If a change is made to one or more lines in a group then the whole group is
marked to be re-executed when ER is pressed.

l Lines can be inserted into a group with the IL keystroke.
l The current line can be cleared with the EL keystroke. (Note, this exists
because it is not possible to UNDO a delete line in the session).

Chapter 1: Highlights 8

Extension to Where
The Where function (monadic ⍸), which previously accepted only a Boolean
argument, has been extended to allow non-negative integers.

The model for Where can be expressed as {(,⍵)/,⍳⍴⍵}, and the same model
may be used to explain the extension. Note that a neater way to write this using
the new Over operator is {⍵/⍥,⍳⍴⍵}.

Examples:

⍸ 0 1 0 2
2 4 4

{⍵/⍥,⍳⍴⍵} 0 1 0 2
2 4 4

⍸2 2⍴0 1 2 3
┌───┬───┬───┬───┬───┬───┐
│1 2│2 1│2 1│2 2│2 2│2 2│
└───┴───┴───┴───┴───┴───┘

Extensions to Mix
Certain APL2 extensions which were only previously implemented when ⎕ML≥2
have been implemented at all levels of ⎕ML.

⎕ML←2
⍴⊃[1]2 3⍴⊂4⍴0 ⍝ APL2 style, inserts new axis

4 2 3
⎕ML←0
⍴↑[1]2 3⍴⊂4⍴0 ⍝ Now works when ⎕ML is <2

4 2 3

⎕ML←2
⍴⊃[1 3]2 3⍴⊂4 5⍴0 ⍝ insert new axes

4 2 5 3
⎕ML←0
⍴↑[1 3]2 3⍴⊂4 5⍴0 ⍝ Now works when ⎕ML is <2

4 2 5 3

Chapter 1: Highlights 9

Regex Variant Option
⎕S and ⎕R now have a Regex Variant option that can be used to disable regular
expression matching.

Regex Option
This option may be used to disable regular expression matching which is enabled
by default. It is a singleton Boolean value that applies to both search and
transformation patterns, or a 2-element vector of Boolean values that applies to
them separately.

1 Regular expression matching is applied.

0 regular expression matching is disabled.

Examples

STR
The cat sat on the mat

('.at' ⎕S '\u0') STR
CAT SAT MAT

('.at' ⎕S '\u0' ⍠('Regex' 0)) STR

('.at'⎕R'\u0')STR
The CAT SAT on the MAT

('.at'⎕R'\u0'⍠('Regex' (1 0)))STR
The \u0 \u0 on the \u0

Chapter 1: Highlights 10

Serialising Namespaces
The Serialisation of an array is its conversion from its internal representation,
which may contain pointers to other structures in the workspace, into a self-
contained series of bytes. This allows the array to be written to a file, transmitted
over a socket or used in a variety of other ways. The de-serialisation of an array is
the conversion back to an internal format whose content and structure is identical
to the original array.

If an array contains a reference to a namespace or object that is within the same
array, it can be serialised and de-serialised normally.

If an array contains a reference to a namespace or object that is not internal to the
array itself, this presents a problem, which is resolved as follows:

1. If the reference is a direct reference to Root (#) or to ⎕SE, it is serialised as
a reference to that symbol, but the contents of # or ⎕SE are not included.
When the array is de-serialised, this results in a reference to the Root (#) or
⎕SE in the current workspace. The newly reconstituted array is not strictly
identical to the original because the contents of # or ⎕SE may be different.

2. If the reference is to an arbitrary external namespace or object, a copy of
that object is included but its path is discarded. When the array is de-
serialised, the copy is reconstituted as a sibling (i.e. as a child of the same
parent as the de-serialised array). In this case the contents of the external
namespace or object are preserved, but not its path. The newly reconstituted
array is not strictly identical to the original because the path to the external
reference has changed.

3. If however, the external namespace or object itself contains an external
reference, the operation fails with DOMAIN ERROR.

Chapter 1: Highlights 11

The following example uses 220⌶ but applies equally to an array serialised by, for
example ⎕FAPPEND.

Examples:

'A' ⎕NS ''
'B' ⎕NS ''
'C' ⎕NS ''
A.b←B
B.c←C
s←1 (220⌶)A

)erase A B C
)obs

New←0(220⌶)s
New

#.A
New.b

#.B
New.b.c

#.C

)clear
clear ws

'A' ⎕NS ''
'B' ⎕NS ''
'X'⎕NS ''
'X.C'⎕NS ''
A.b←B
B.c←X.C
s←1(220⌶)A

DOMAIN ERROR: Namespace is not self contained
s←1(220⌶)A

∧

Note that a successful 0(220⌶) does not mean that a 1(220⌶) on the result will
succeed. If the original reference was to, say, the MenuBar of ⎕SE you cannot
reconstitute that in #.

Chapter 1: Highlights 12

Load
This parameter is a character string that specifies the name of a workspace, or a text
file containing APL source code, to be loaded when Dyalog starts. It will normally
be specified on the command line or in a Configuration file.

Dyalog determines whether or not the file is a workspace by its internal signature.
If it is a workspace, the expression specified by its Latent Expression ⎕LX will be
executed by default. This expression may be overridden by the LX parameter.

Otherwise, if the file extension is .aplf .aplc or .apln Dyalog will attempt to
fix the contents of the file as APL source code. If successful, it will by default run
the expression shown in the table below, where filename is the file name
specified by the Load parameter without its extension. This expression may be
overridden by the LX parameter.

File Extension Type Expression

.aplf Function source code filename 0⍴⊂''

.aplc Class source code filename.Run 0⍴⊂''

.apln Namespace source code filename.Run 0⍴⊂''

Notes:

l The Load parameter overrides a workspace name specified as the last item
on the command line.

l The option to load APL source code from a text file applies only to the
Unicode version and is not supported by the Classic version.

LX
This parameter specifies an expression to be executed after Dyalog has started and
loaded a workspace or a text file containing APL source code. Also see Load on
page 12. This expression is run only on Dyalog start-up and overrides the
workspace latent expression ⎕LX.

The LX parameter applies only to the development version of Dyalog and is
ignored in run-time applications.

The LX parameter is ignored when a workspace is loaded other than at start-up of
the Dyalog program.

Chapter 1: Highlights 13

Bug Fixes
A number of bug fixes implemented in Version 18.0 may change the way that
existing code operates and are therefore documented in this section.

Change to ⎕S
⎕S with a transformation pattern returns a vector of character vectors, one per
match. When there are no matches it should therefore return a zero-length array of
character vectors, but it used to erroneously return an empty character vector.

]box on -style=max

('X'⎕S'&')'Y' ⍝ Old behaviour
┌⊖┐
│ │
└─┘

('X'⎕S'&')'Y' ⍝ Corrected behaviour:
┌⊖────┐
│ ┌⊖┐ │
│ │ │ │
│ └─┘ │
└∊────┘

Note: there is no change to the result if used with a transformation code or
transformation function, and ⎕R is not affected.

Minor Correction to ⍞
Version 17.1:

⍞←20↑'hello' ⋄ x←⍞
hello ⍝ user presses ER

x
hello

⍴x
5

Version 18.0

⍞←20↑'hello' ⋄ x←⍞
hello ⍝ user presses ER

x
hello

⍴x
20

APLTextInAplCore parameter

The default for this parameter is now 1 on all platforms.

Chapter 1: Highlights 14

Announcements
Withdrawal of Support for Version 16.0
The supported Versions of Dyalog APL are now Version 18.0, 17.1, and 17.0.
Version 16.0 and earlier versions are no longer supported.

Planned Operating System Requirements for the
next version
Dyalog Ltd expects that the next version of Dyalog will require the following
minimum platform requirements:

Operating
System Version

Microsoft
Windows Windows 8/Server 2012

AIX POWER 8 (if you have a POWER 7 requirement, please contact
sales@dyalog.com).

Linux Versions of distributions which are in standard support for at
least 3 months from when the next version of Dyalog is released

macOS macOS Catalina

Raspberry
Pi Raspbian Buster

Further updates to this information will appear on the Forums as and when
available.

Planned Hardware Requirements for next version
The same as Dyalog Version 18.0.

Case Convert
(819⌶) has been replaced by ⎕C and is deprecated. It will be removed in a future
release. See Case Convert on page 42.

⎕SE.⎕WX
The default value of ⎕SE.⎕WX is now 3, matching the recommended default value.

Chapter 1: Highlights 15

System Requirements
Microsoft Windows
Dyalog APL Version 18.0 is supported on versions of Microsoft Windows from
Windows 8 or Windows Server 2012, up to and including Windows 10 and
Windows Server 2016.

Microsoft .NET Interface
Dyalog APL Version 18.0 .NET Interface requires Version 4.0 or greater of the
Microsoft .NET Framework. It does not operate with earlier versions of .NET.

For full Data Binding support (including support for the
INotifyCollectionChanged interface1) Version 18.0 requires .NET Version
4.5. The Syncfusion libraries supplied with Version 18.0 require .NET 4.6.

The examples provided in the sub-directory Samples/asp.net require that IIS
is installed. If IIS and ASP.NET are not present, the asp.net sub-directory will
not be installed during the Dyalog installation.

AIX
For AIX, Version 18.0 requires AIX 7.2 or higher, and a POWER8 chip or higher.

Raspberry Pi
On the Raspberry Pi, Dyalog 32-bit Unicode supports Raspbian Buster or later
(Bookworm requires Dyalog version 18.0.48479).

Non-Pi Linux
For non-Pi Linux, Version 18.0 only exists as 64-bit interpreters - there are no 32-
bit versions. It is built on Ubuntu 18.04; it should run on all recent distributions.
See https://forums.dyalog.com/viewtopic.php?f=20&t=1652 for a list of tested
platforms.

macOS/Mac OS X
Version 18.0 requires macOS High Sierra or later. The target Mac must have been
introduced in 2010 or later.

1This interface is used by Dyalog to notify a data consumer when the contents of a variable, that is
data bound as a list of items, changes.

https://forums.dyalog.com/viewtopic.php?f=20&t=1652

Chapter 1: Highlights 16

Interoperability
Introduction
Workspaces and component files are stored on disk in a binary format (illegible to
text editors). This format differs between machine architectures and among versions
of Dyalog. For example, a file component written by a PC may well have an
internal format that is different from one written by a UNIX machine. Similarly, a
workspace saved from Dyalog Version 18.0 will differ internally from one saved
by a previous version of Dyalog APL.

It is convenient for versions of Dyalog APL running on different platforms to be
able to interoperate by sharing workspaces and component files. From Version
11.0, component files and workspaces can generally be shared between Dyalog
interpreters running on different platforms. However, this is not always possible
and the following sections describe limitations in interoperability:

Code and ⎕ORs
Code that is saved in workspaces, or embedded within ⎕ORs stored in component
files, can only be read by the Dyalog version which saved them and later versions
of the interpreter. In the case of workspaces, a load (or copy) into an older version
would fail with the message:

this WS requires a later version of the interpreter.

Every time a ⎕OR object is read by a version later than that which created it, time
may be spent in converting the internal representation into the latest form. Dyalog
recommends that ⎕ORs should not be used as a mechanism for sharing code or
objects between different versions of APL.

"Ordinary" Arrays
With the exception of the Unicode restrictions described in the following
paragraphs, Dyalog APL provides interoperability for arrays that only contain
(nested) character and numeric data. Such arrays can be stored in component files -
or transmitted using TCPSocket objects and Conga connections, and shared
between all versions and across all platforms.

Full cross-platform interoperability of component files is only available for large-
span component files.

Chapter 1: Highlights 17

Null Items (⎕NULL) and Compressed Components
⎕NULLs and components from compressed component files that were created in
Version 18.0 and later can be brought into Versions 16.0, 17.0 and 17.1 provided
that the interpreters have been patched to revision 38151 or higher. Attempts to
bring ⎕NULL or compressed component into earlier versions of Dyalog APL or
lower revisions of the aforementioned versions will fail with:

DOMAIN ERROR: Array is from a later version of APL.

Object Representations (⎕OR)
An attempt to ⎕FREAD a component containing a ⎕OR that was created by a later
version of Dyalog APL will generate DOMAIN ERROR: Array is from a
later version of APL. This also applies to APL objects passed via Conga
or TCPSockets, or objects that have been serialised using 220⌶.

32 vs. 64-bit Component Files
It is no longer possible to create or write to small-span (32-bit) files; however it is
still currently possible to read from small span files. Setting the second item of the
right argument of ⎕FCREATE to anything other than 64 will generate a
DOMAIN ERROR.

Note that small-span (32-bit-addressing) component files cannot contain Unicode
data. Unicode editions of Dyalog APL can only write character data which would
be readable by a Classic edition (consisting of elements of ⎕AV).

External Variables
External variables are subject to the same restrictions as small-span component files
regarding Unicode data. External variables are unlikely to be developed further;
Dyalog recommends that applications which use them should switch to using
mapped files or traditional component files. Please contact Dyalog if you need
further advice on this topic.

32 vs. 64-bit Interpreters
There is complete interoperability between 32- and 64-bit interpreters, except that
32-bit interpreters are unable to work with arrays or workspaces greater than 2GB
in size.

Note however that under Windows a 32-bit version of Dyalog APL may only
access 32-bit DLLs, and a 64-bit version of Dyalog APL may only access 64-bit
DLLs. This is a Windows restriction.

Chapter 1: Highlights 18

Unicode vs. Classic Editions
Two editions are available on some platforms. Unicode editions work with the
entire Unicode character set. Classic editions (which are only available to
commercial and enterprise users for legacy applications) are limited to the 256
characters defined in the atomic vector, ⎕AV.

Component files have a Unicode property. When this is enabled, all characters will
be written as Unicode data to the file. The Unicode property is always off for
small-span (32-bit addressing) files, as these cannot contain Unicode data. For
large-span (64-bit addressing) component files, the Unicode property is set on by
Unicode Editions and off by Classic Editions, by default. The Unicode property
can subsequently be toggled on and off using ⎕FPROPS.

When a Unicode edition writes to a component file that cannot contain Unicode
data, character data is mapped using ⎕AVU; it can therefore be read without
problems by Classic editions.

A TRANSLATION ERROR will occur if a Unicode edition writes to a non-
Unicode component file (that is either a 32-bit file, or a 64-bit file when the
Unicode property is currently off) if the data being written contains characters that
are not in ⎕AVU.

Likewise, a Classic edition will issue a TRANSLATION ERROR if it attempts to
read a component containing Unicode data that is not in ⎕AVU from a component
file.

A TRANSLATION ERROR will also be issued when a Classic edition attempts to
)LOAD or)COPY a workspace containing Unicode data that cannot be mapped to
⎕AV using the ⎕AVU in the recipient workspace.

TCPSocket objects have an APL property that corresponds to the Unicode
property of a file, if this is set to Classic (the default) the data in the socket will
be restricted to ⎕AV, if Unicode it will contain Unicode character data. As a result,
TRANSLATION ERRORs can occur on transmission or reception in the same way
as when updating or reading a file component.

The symbols ⊆, ⍸, ⍤, ⍠, ⌸, ⌺ and ⍥ used for the Nest (Interval Index) and Where
(Partition) functions, the Rank, Variant, Key, Stencil and Over operators
respectively are available only in the Unicode edition. In the Classic edition, these
symbols are replaced by ⎕U2286, ⎕U2378, ⎕U2364, ⎕U2360, ⎕U2338, ⎕U233a
and ⎕U2365 respectively. In both Unicode and Classic editions Variant may be
represented by ⎕OPT.

Very large array components
An attempt to read a component greater than 2GB in 32-bit interpreters will result
in a WS FULL.

Chapter 1: Highlights 19

TCPSockets and Conga
TCPSockets and Conga can be used to communicate between differing versions of
Dyalog APL and are subject to similar limitations to those described above for
component files.

Auxiliary Processors
A Dyalog APL process is restricted to starting an AP of exactly the same
architecture from the same operating system. In other words, the AP must share the
same word-width and byte-ordering as its interpreter process.

Session Files
Session (.dse) files can only be used on the platform on which they were created
and saved. Under Microsoft Windows, Session files may only be used by the
architecture (32-bit-or 64-bit) of the Version of Dyalog that saved them.

Chapter 1: Highlights 20

Chapter 2: Configuration 21

Chapter 2:

Configuration

Session Initialisation
Background
This enhancement aims to provide a standard, documented mechanism that will
allow Dyalog and users to add content to the session (⎕SE) upon start-up of a
Dyalog session, simply by placing the code to be loaded in a directory. The
directory may be in a default location, or be specified using configuration
parameters.

Each time Dyalog starts it loads and executes an initialisation file whose name is
defined by the DyalogStartup parameter. If this is undefined, the default file is
named startup.dyalog in the Dyalog directory. This process was introduced
in Version 17.1 to load Link. From Version 18.0, the code defined in
startup.dyalog also performs Session initialisation.

Implementation
Code to be installed in ⎕SE is specified in APL source code files contained in
Session initialisation directories identified by the DyalogStartupSE parameter. If
this parameter is not specified, the default is a directory named
StartupSession located in three standard locations as described below.

Only content stored in files matching the wildcard patterns *.dyalog and
*.apl? will be loaded. All such files must be appropriate for ⎕FIX.

For each sub-directory in a Session initialisation directory, a corresponding
namespace is created in ⎕SE, and any source code files in these sub-directories will
be fixed in their respective corresponding namespaces. There is currently no
support for additional subdirectories inside these subdirectories, although this
feature is planned.

Chapter 2: Configuration 22

The Session initialisation directories are processed in order and code defined in
each directory will replace code with the same name defined previously. In effect,
this means that user-supplied content can replace content supplied by Dyalog Ltd.
and version-specific content can replace version-agnostic content.

Default Session Initialisation Directories
If the DyalogStartupSE parameter is undefined, APL looks for Session
initialisation directories named StartupSession in the following three
locations, and processes them in that order:

1. The Dyalog installation directory (which contains the dyalog executable)
2. A version-agnostic sub-directory in the user directory (the standard directory

for user-related Dyalog APL files)
3. A version-specific sub-directory in the user directory, whose name is derived

as described below.

Under Windows these might be:

1. C:\Program Files\Dyalog\Dyalog APL-64 18.0 Unicode
2. C:\Users\Pete\Documents\Dyalog APL Files
3. C:\Users\Pete\Documents\Dyalog APL-64 18.0 Unicode

Files

The version-specific name is :

Dyalog APL{bit} {version} {edition}

where:

l {bit} is "-64" if 64-bit version, otherwise nothing
l {version} is the main and secondary version numbers of dyalog.exe
separated by ".".

l {edition} is "Unicode" for the Unicode Edition, otherwise nothing

On non-Windows platforms these might be:

1. /opt/mdyalog/18.0/64/unicode
2. /home/Pete/dyalog.files
3. /home/Pete/dyalog.180U64.files

The version-specific name is:

dyalog.{version}{edition}{bit}.files

where:

l {version} is main and secondary version numbers without separator
l {edition} is an uppercase "U" or "C" for Unicode/Classic
l {bit} is "64" or "32" depending on bit-width

Chapter 2: Configuration 23

File Associations
During installation, setup.exe associates a number of file extensions with
Dyalog applications.

Workspace files with extension .dws and files with extension .dyapp, which are
used to bootstrap SALT-based applications1, are associated with dyalog.exe.

The following file types are associated with the Dyalog APL Editor
dyaedit.exe. They are used by various source code management tools,
including Link2 and SALT3 and 3rd party tools like Acre Desktop4.

.aplf Functions

.aplo Operators

.apln Namespaces

.aplc Classes

.apli Interfaces

.dyalog Generic

Additionally, Link uses .apla files to store serialised arrays. These are likely to
become associated with dyaedit.exe in a future release.

Configuration Parameters
Introduction
Dyalog APL is customised using a set of configuration parameters. These may be
defined in a number of ways, which take precedence as follows:

l Command-line settings
l Application configuration file settings
l Environment variable settings
l User configuration file settings
l Settings in the registry section defined by the IniFile parameter (Windows
only)

l Built-in defaults

1http://docs.dyalog.com/latest/SALT User Guide.pdf#page=12
2https://github.com/Dyalog/link/blob/master/help/Link.md
3http://docs.dyalog.com/latest/SALT User Guide.pdf
4https://github.com/the-carlisle-group/Acre-Desktop/wiki

Chapter 2: Configuration 24

This scheme provides a great deal of flexibility, and a system whereby you can
override one setting with another. For example, you can define your normal
workspace size (maxws) in the Registry, but override it with a new value specified
on the APL command line. The way this is done is described in the following
section.

Furthermore, you are not limited to the set of parameters employed by APL itself as
you may add parameters of your own choosing.

Although for clarity parameter names are given here in mixed case, they are case-
independent under Windows. Under UNIX and Linux, if Dyalog parameters are
specified as environment variables they must be named entirely in upper-case.

Note that the value of a parameter obtained by the GetEnvironment method (see
Object Reference Guide: GetEnvironment Method) uses exactly the same set of
rules.

The following section details those parameters that are implemented by Registry
Values in the top-level folder identified by IniFile. Values that are implemented in
sub-folders are mainly internal and are not described in detail here. However, any
Value that is maintained via a configuration dialog box will be named and
described in the documentation for that dialog box in The APL Environment.

Specifying Size-related Parameters
Several of the configuration parameters define sizes.

The value of the parameter must consist of an integer value, optionally followed
immediately by a single character which denotes the units to be used. If the value
contains no character the units are assumed to be KiB.

Valid values for units are:

K(KiB), M(MiB), G(GiB), T(TiB), P(PiB) and E(EiB).

Specifying an invalid value will prevent Dyalog APL from starting.

Changing parameter values in the Registry
You can change parameters in the Registry in one of two ways:

l Using the Configuration dialog box that is obtained by selecting Configure
from the Options menu on the Dyalog APL/W session.

l By directly editing the Windows Registry using REGEDIT.EXE or
REGEDIT32.EXE. This is necessary for parameters that are not editable via
the Configuration dialog box.

Chapter 2: Configuration 25

New Configuration Parameters

Dyalog_NETCore
This Boolean parameter specifies whether the .NET Core interface is enabled. On
Windows the default is 0 which disables the .NET Core interface in favour of the
.NET Framework interface. If it is set to 1, Dyalog uses .NET Core instead of the
.NET Framework.

On other platforms which support the .NET Core, the default is 1.

APL_TextInAplCore
This Boolean parameter specifies whether or not certain information is written to
an aplcore file when a system error occurs. The default is 1.

Configuration Files
Introduction
A configuration file is an optional text file containing configuration parameters
and their values. It may cascade, i.e. it can extend (inherit) configuration values
from other configuration files, and supplement and/or override them.

Configuration files use JSON5 (a superset of standard JSON) syntax, as described
below. These files are portable across all systems supported by Dyalog.

Names of configuration parameters defined in Configuration files may be
specified in any combination of alphabetic case.

Dyalog processes up to two kinds of configuration file (each of which may
cascade):

1. An application configuration file which contains configuration values
associated with a specific application

2. A user configuration file which defines configuration values for the current,
and possibly only, user of the system.

Chapter 2: Configuration 26

Application Configuration File
When Dyalog starts, it derives the name of the application configuration file as
follows:

l The name in the configuration parameter ConfigFile if it is set, otherwise
l The name of the workspace or script loaded at start-up using the Load
parameter, with the extension replaced by .dcfg, if that file exists,
otherwise

l Nothing.

User Configuration File
The name of the user configuration file is specified by the UserConfigFile
parameter. Under Windows, this parameter is not set by default but may be defined
by the user.

Precedence
Configuration files supplement existing methods of defining parameters. The
following precedence table shows the order of precedence when a setting is
defined in multiple places:

l Command-line settings override
l Application configuration file settings, which override
l Environment variable settings, which override
l User configuration file settings, which override
l Settings in the registry (Windows only), which override
l Built-in defaults

Configuration Files and The Configuration Dialog
The Configuration Dialog reflects the values of parameters stored in the Windows
Registry and ignores overriding values defined on the command-line, in
configuration files or in environment variables. If the user changes parameters
using the Configuration Dialog, the new values are recorded in the Registry, but
remain overridden by those that take precedence.

Chapter 2: Configuration 27

Configuration File Structure
Configuration files define configuration parameters using JSON5. A JSON object
contains data in the form of key/value pairs and other JSON objects. The keys are
strings and the values are the JSON types. Keys and values are separated by colon.
Each entry (key/value pair) is separated by comma.

The top-level object defines an optional key named Extend and an optional object
named Settings.

Extend is a string value containing the name of a configuration file to import. The
extended (imported) file may in turn extend another configuration file.
Configuration values from the imported file(s) may be overridden by redefining
them. The file name is implicitly relative to the name of the file which imports it.
Any file name extension must be explicitly specified.

Settings is an object containing the names of configuration parameters and their
values. The values may be:

l A string
l A number
l An array of strings

The names and values correspond to configuration parameters, but names are not
case sensitive. Any named values may be defined; an APL application may query
the values using +2⎕NQ'.' 'GetEnvironment' name, or using the
]config user command. Note that GetEnvironment returns the value in use
as defined by the precedence rules (see Precedence above).

Example
+2 ⎕NQ '.' 'GetEnvironment' ('MaxWS' 'Captions\Session')

┌────┬───────────────────────┐
│256M│My Dyalog V18.0 Session│
└────┴───────────────────────┘

]config MaxWS Captions\Session
┌────────────────┬───────────────────────┐
│MaxWS │256M │
├────────────────┼───────────────────────┤
│Captions\Session│My Dyalog V18.0 Session│
└────────────────┴───────────────────────┘

A warning will be given if names are redefined in the same configuration file; the
second and subsequent definitions will be discarded.

File Names
Pathnames specified in configuration files should be specified using portable
forward slashes "/" rather than back-slashes "\" as the latter are used as escape
characters by JSON.

Chapter 2: Configuration 28

WSPATH: ["c:/Dyalog18.0"] or WSPATH: ["c:\\Dyalog18.0"]
specifies the file c:\Dyalog18.0.

whereas,

WSPATH: ["c:\Dyalog18.0"] means c:Dyalog18.0.

Example
{
Extend: "my_default_configuration.dcfg",

Settings: {
// maximum workspace
MAXWS: "2GB",
WSPATH: ["/dir1", "/dir2", ""],
UserOption: 123,
ROOTDIR: "/my/root/directory",
// references to other configuration parameters
FNAME: "[rootdir]/filename",

}
}

Arrays
An array may be used to define file paths etc. For example,

WSPATH: ["/dir1", "/dir2"]

The only parameters which may be defined as arrays are WSPATH,WSEXT and
CFEXT.

References to other Configuration Parameters
Configuration parameters which are string values may include references to other
configuration parameters (regardless of where they are defined) using square
bracket delimiters. For example:

MySetting: "[DYALOG]/MyFile"

will replace [DYALOG] with the value of the DYALOG configuration value.

Note that:

l If the referenced configuration parameter is not defined then no substitution
will take place; the reference, including square bracket delimiters, will
remain in place.

l To include square brackets in a string, prefix the '[' with a '\' character.

Chapter 2: Configuration 29

Nested Structures
Some parameters are stored in sub-folders in the Windows Registry. Currently, all
such parameters used by Dyalog APL itself relate to the Windows IDE, but you
can create your own application-specific structures..

The Configuration file supports this structure by defining an object that
corresponds to a Registry sub-folder. For example:

Captions: {
Session: "My Dyalog Session",
Status: "My Status window",

}

+2 ⎕NQ '.' 'GetEnvironment' 'Captions\Session'
My Dyalog Session

Run-Time Applications and Components
Using Dyalog APL you may create different types of run-time applications and
components. Note that the distribution of run-time applications and components
requires a Dyalog APL Run-Time Agreement. Please contact Dyalog or your
distributor, or see the Dyalog web page for more information.

The various types of run-time applications and components are as follows:

1. Workspace or source code run-time
2. Stand-alone run-time
3. Bound run-time
4. Out-of-Process COM Server
5. In-Process COM Server
6. ActiveX Control
7. Microsoft .NET Assembly

All but the first of these are made using the Export dialog box accessed from the
File/Export menu item of the Session window.

Configuration Parameters
Configuration parameters for these run-time applications, both for the Dyalog
engine and for your own application settings, may be specified in a number of
ways. See Configuration Parameters on page 23.

Nevertheless, it is strongly recommended that you use Configuration files. In this
section we will discuss only Application Configuration files, although User
Configuration files may be used as well.

Chapter 2: Configuration 30

Workspace or source code based run-time
A workspace or source code based run-time application consists of the Dyalog
APL Run-Time Program (Run-Time EXE), a separate workspace or text file
containing APL source code, and an optional configuration file. To distribute your
application, you need to supply and install:

1. your workspace or source code
2. the Run-Time EXE
3. a configuration file (optional)
4. whatever additional files that may be required by your application
5. a command-line to start the application

The command-line for your application invokes the Run-Time EXE and directly or
indirectly specifies the name of the workspace or source code file and the optional
configuration file. You will need to associate your own icon with your application
during its installation.

The name of the workspace or source code file may be specified by the Load
parameter on the command line. If the application uses a workspace, the name of
the workspace may instead be supplied as the last item on the command-line.

The name of the configuration file may be specified on the application command-
line, using the ConfigFile parameter. Alternatively, the name of the configuration
file is derived from the name of the workspace or source code file.

The action to start the application when a workspace or source code file is loaded
is specified by the LX parameter or, for a workspace, by its latent expression
(⎕LX).

In the command-line examples that follow, the name of the Run-Time EXE has
been shortened to dyalogrt.exe for brevity.

Using a workspace
dyalogrt.exe myapp.dws

The application starts by running ⎕LX in myapp.dws. If a configuration file
named myapp.dcfg in the same directory, it is loaded and applied.

Using a source code file
dyalogrt.exe Load=myfn.aplf

The application loads the file named myfn.aplf which contains the source code
for a function, and executes the expression (myfn 0⍴⊂'') (see Load on page
12). If a configuration file named myfn.dcfg in the same directory, it is loaded
and applied.

Chapter 2: Configuration 31

If your application uses any component of the Microsoft .NET Framework, you
must distribute the Bridge DLL and DyalogNet DLLs. These DLLs must be placed
in the same directory as your EXE.

Stand-alone and Bound run-times
A stand-alone run-time is a single .EXE that contains a workspace and a copy of
the Run-Time version of the Dyalog APL interpreter. It is the simplest type of run-
time to install because it has the fewest number of dependencies.

A bound run-time is a workspace packaged as a .EXE that relies upon and requires
the separate installation of the Run-Time DLL. Compared with the stand-alone
executable option, bound run-times may save disk space and memory if your
customer installs and runs several different Dyalog applications.

Both these run-times are created using the File/Export menu item on the Session
window.

To distribute your application, you need to supply and install:

1. your stand-alone or bound .EXE
2. the Run-Time DLL (bound .EXE only)
3. a configuration file (optional)
4. whatever additional files that may be required by your application
5. a command-line to start the application

When you build your .EXE using the Export dialog, you may specify the name(s)
of the configuration file(s) using the ConfigFile and/or UserConfigFile parameters
in the field labelled Command Line.

An alternative is to specify these parameters in the command-line that you use to
run your .EXE (note that this is not the same as the Command Line in the Export
dialog box). If so, the Dyalog parameter(s) must be preceded by the -apl option.

If your application uses any component of the Microsoft .NET Framework, you
must distribute the Bridge DLL and DyalogNet DLLs. These DLLs must be placed
in the same directory as your EXE.

Out-of-process COM Server
To make an out-of-process COM Server, you must:

1. establish one or more OLEServer namespaces in your workspace, populated
with functions and variables that you wish to export as methods, properties
and events.

2. use the File/Export … menu item on the Session window to register the
COM Server on your computer so that it is ready for use.

Chapter 2: Configuration 32

The command-line for your COM Server must be specified in the field labelled
Command Line in the Export dialog box. The field is initialised to invoke the
Run-Time EXE with the name of your workspace in the same fashion as the
workspace-based run-time discussed above. This command-line is recorded in the
Windows Registry to be invoked when a client application requests it.

You may change the contents of the Command Line field to use a configuration
file, in the same way as for a workspace-based runtime. The following example
uses the Loan COM Server. See Interface Guide: The LOAN Workspace.

Example:
dyalog.exe C:\Dyalog18.0\myloan.dws

The command-line above will, on invocation, cause Dyalog to load the
myloan.dws workspace together with the configuration file myloan.dcfg if it
exists in that directory.

To distribute an out-of-process COM Server, you need to supply and install the
following files:

1. your workspace
2. the associated Type Library (.tlb) file (created by File/Export)
3. the Run-Time EXE
4. a configuration file (optional)
5. whatever additional files that may be required by your application

To install an out-of-process COM Server you must set up the appropriate Windows
registry entries. See Interface Guide for details.

In-process COM Server
To make an in-process COM Server, you must:

1. establish one or more OLEServer namespaces in your workspace, populated
with functions and variables that you wish to export as methods, properties
and events.

2. use the File/Export … menu item on the Session window to create an in-
process COM Server (DLL) which contains your workspace bound to the
Run-Time DLL. This operation also registers the COM Server on your
computer so that it is ready for use.

As there is no command-line available, to specify a configuration file for an in-
process COM server, it is necessary to define the ConfigFile parameter and/or the
UserConfigFile parameter as an environment variable or in the registry.

Chapter 2: Configuration 33

To distribute your component, you need to supply and install

1. Your COM Server file (DLL)
2. the Run-Time DLL
3. a configuration file (optional) and the means to define ConfigFile and/or

UserConfigFile
4. whatever additional files that may be required by your COM Server.

Note that you must register your COM Server on the target computer using the
regsvr32.exe utility.

ActiveX Control
To make an ActiveX Control, you must:

1. establish an ActiveXControl namespace in your workspace, populated with
functions and variables that you wish to export as methods, properties and
events.

2. use the File/Export … menu item on the Session window to create an
ActiveX Control file (OCX) which contains your workspace bound to the
Run-Time DLL. This operation also registers the ActiveX Control on your
computer so that it is ready for use.

As there is no command-line available, to specify a configuration file for an in-
process COM server, it is necessary to define the ConfigFile parameter and/or the
UserConfigFile parameter as an environment variable or in the registry.

To distribute your component, you need to supply and install

1. Your ActiveX Control file (OCX)
2. the Run-Time DLL
3. a configuration file (optional) and the means to define ConfigFile and/or

UserConfigFile
4. whatever additional files that may be required by your ActiveX Control.

Note that you must register your ActiveX Control on the target computer using the
regsvr32.exe utility.

Microsoft .NET Assembly
A Microsoft .NET Assembly contains one or more .NET Classes. To make a
Microsoft .NET Assembly, you must:

1. establish one or more NetType namespaces in your workspace, populated
with functions and variables that you wish to export as methods, properties
and events.

2. use the File/Export … menu item on the Session window to create a
Microsoft .NET Assembly (DLL) which contains your workspace bound to
the Run-Time DLL.

Chapter 2: Configuration 34

If the option selected in the Isolation Mode field of the Export dialog is either:

l Each assembly has its own workspace, or
l Each assembly attempts to use local bridge and interpreter libraries

you may enter configuration parameters or specify a Configuration file for your
Dyalog assembly in the field labelled Command Line.

For the other isolation modes, this is not appropriate because only the command
line from the first assembly loaded into the interpreter could be honoured, and the
order in which assemblies are loaded is unpredictable. However, configuration files
may be specified using the ConfigFile parameter and/or the UserConfigFile
parameter specified as an environment variable or in the registry.

To distribute your .NET Classes, you need to supply and install

1. your Assembly file (DLL)
2. the Run-Time DLL
3. the Bridge DLL
4. the DyalogNet DLL
5. a configuration file (optional) and, depending upon the isolation mode, the

means to define ConfigFile and/or UserConfigFile
6. whatever additional files that may be required by your .NET Assembly.

All the DLLs and subsidiary files must be installed in the same directory as the
.NET Assembly.

Chapter 3: Language Reference Changes 35

Chapter 3:

Language Reference Changes

Language Changes
The following table summarises the main changes to language features in Version
18.0.

Function/Operator Description Change

{X}f⍤gY Atop New operator

{X}f∘gY Beside Renamed operator

A∘gY
(f∘B)Y

Bind Renamed operator

{X}(A⍨)Y Constant New operator

{X}f⍥gY Over New operator

≠ Unique Mask New monadic function

⎕C Case Convert New system function

⍸ Where Function extended

X⊂Y Partitioned Enclose Function extended

⎕DT Date-time New system function

1200⌶ Format Date-time New I-beam function

Chapter 3: Language Reference Changes 36

Atop {R}←{X}f⍤gY

Classic Edition: the symbol ⍤ is not available in Classic Edition, and the Atop
operator is instead represented by ⎕U2364.

f can be any monadic function. Y can be any array that is suitable as the right
argument to function g with the result of g being appropriate to function f.

If X is omitted, g must be a monadic function. If X is specified, g must be a dyadic
function and X can be any array that is suitable as the left argument to function g.

The derived function is equivalent to fgY or fXgY and need not return a result.

The Atop operator allows functions to be glued together to build up more complex
functions. For further information, see Function Composition on page 1.

Examples:

-⍤÷ 4 ⍝ (f⍤g y) ≡ f g y
¯0.25

12 -⍤÷ 4 ⍝ (x f⍤g y) ≡ (f x g y)
¯3

3 1 4 1 5 ~⍤∊ 1 2 3
0 0 1 0 1

Beside {R}←{X}f∘gY

g can be any monadic function which returns a result. Y can be any array
appropriate to function g with gY being suitable as the right argument to function
f.

If X is omitted, f must be a monadic function. If X is specified, f must be a dyadic
function and X can be any array that is suitable as the left argument to function f.

The derived function is equivalent to fgY or XfgY and need not return a result.

The Beside operator allows functions to be glued together to build up more
complex functions. For further information, see Function Composition on page 1.

Examples

RANK ← ⍴∘⍴
RANK ¨ 'JOANNE' (2 3⍴⍳6)

1 2

Chapter 3: Language Reference Changes 37

+/∘⍳¨2 4 6
3 10 21

⎕VR'SUM'
∇ R←SUM X

[1] R←+/X
∇

SUM∘⍳¨2 4 6
3 10 21

+∘÷/40⍴1 ⍝ Golden Ratio! (Bob Smith)
1.618033989

0,∘⍳¨⍳5
0 1 0 1 2 0 1 2 3 0 1 2 3 4 0 1 2 3 4 5

Bind {R}←A∘fY
{R}←(f∘B)Y

The Bind operator binds an array A or B to a dyadic function f either as its left or
its right argument respectively. The former may be described as left argument
currying and the latter as right argument currying.

A, B and Y may be any arrays whose items are appropriate to function f. In the
case where B is bound as the right argument of function f, the parentheses are
required in order to distinguish between the operand B and the argument Y.

The derived function is equivalent to AfY or YfB and need not return a result.

Examples

2 2∘⍴ ¨ 'AB'
AA BB
AA BB

SINE ← 1∘○

SINE 10 20 30
¯0.5440211109 0.9129452507 ¯0.9880316241

(*∘0.5)4 16 25
2 4 5

SQRT ← *∘.5

SQRT 4 16 25
2 4 5

Chapter 3: Language Reference Changes 38

The following example uses both forms of Bind to list functions in the workspace:

⎕NL 3
ADD
PLUS

⎕∘←∘⎕VR¨↓⎕NL 3
∇ ADD X

[1] →LAB⍴⍨0≠⎕NC'SUM' ⋄ SUM←0
[2] LAB:SUM←SUM++/X

∇
∇ R←A PLUS B

[1] R←A+B
∇

Constant R←{X}(A⍨)Y

A, X and Y are arrays. The Constant operator returns array A.

Examples:

'mu'⍨ 'any' ⎕NULL ⍝ Always returns its operand
mu

1E100 ('mu'⍨) 1j1
mu

¯1⍨¨ ⍳2 3
¯1 ¯1 ¯1
¯1 ¯1 ¯1

Over {R}←{X}f⍥gY

Classic Edition: the symbol ⍥ is not available in Classic Edition, and the Over
operator is instead represented by ⎕U2365.

g can be any monadic function which returns a result. Y can be any array that is
suitable as the argument to function g with gY being suitable as the right
argument to function f.

If X is omitted, f must be a monadic function. If X is specified, f must be a dyadic
function and X can be any array that is suitable as argument to function g with gX
being suitable as the left argument to function f.

The derived function is equivalent to fgY or (gX)f(gY) and need not return a
result.

The Over operator allows functions to be glued together to build up more complex
functions. For further information, see Function Composition on page 1.

Chapter 3: Language Reference Changes 39

Examples

2 3 ,⍥⊂ 'text' ⍝ ,⍥⊂ ←→ {⍺⍵}
┌───┬────┐
│2 3│text│
└───┴────┘

scores←82 90 76
weights←20 35 45
(weights×scores)÷⍥(+/)weights ⍝ Weighted average

82.1

Unique Mask R←≠Y

Y may be any array.

R is a Boolean vector whose length is the number of major cells in Y. For each
major cell of Y, the corresponding element of R is 1 if it is the first occurrence of
that value, and 0 if it is a duplicate of an earlier major cell.

⎕CT and ⎕DCT are implicit arguments of Unique.

Examples

≠22 10 22 22 21 10 5 10
1 1 0 0 1 0 1 0

≠ v←'CAT' 'DOG' 'CAT' 'DUCK' 'DOG' 'DUCK'
1 1 0 1 0 0

⊢mat←↑v
CAT
DOG
CAT
DUCK
DOG
DUCK

≠mat
1 1 0 1 0 0

Chapter 3: Language Reference Changes 40

Partitioned Enclose (⎕ML<3) R←X⊂[K]Y

Y may be any array. X must be a simple integer scalar or vector. If X is a scalar it
is extended to (≢Y)⍴X.

The axis specification is optional. If present, it must be a simple integer scalar or
one-element vector. The value of K must be an axis of Y. If absent, the last axis of
Y is implied.

R is a vector of items selected from Y by inserting 0 or more dividers, specified by
X, between its major cells.

Each element of X species the number of dividers to insert before the
corresponding major cell of Y. The maximum length of X is 1+≢Y, when the last
element of X specifies the number of trailing dividers. Note that major cells of Y
that precede the first divider (identified by the first non-zero element of X) are
excluded from the result.

The length of R is +/X (after possible extension).

Chapter 3: Language Reference Changes 41

Examples

0 0 1 0 0 1 0⊂'abcdefg'
┌───┬──┐
│cde│fg│
└───┴──┘

2 0 1 3 0 2 0 1⊂'abcdefg'
┌┬──┬─┬┬┬──┬┬──┬┐
││ab│c│││de││fg││
└┴──┴─┴┴┴──┴┴──┴┘

0 2 0 1⊂'abcdefg'
┌┬──┬────┐
││bc│defg│
└┴──┴────┘

The above examples may be explained pictorially by the diagram below.

Further Examples

1 0 1⊂[1]3 4⍴⍳12
┌───────┬──────────┐
│1 2 3 4│9 10 11 12│
│5 6 7 8│ │
└───────┴──────────┘

1 0 0 1⊂[2]3 4⍴⍳12
┌───────┬──┐
│1 2 3│ 4│
│5 6 7│ 8│
│9 10 11│12│
└───────┴──┘

Chapter 3: Language Reference Changes 42

Case Convert R←{X}⎕C Y

Y is any array. R is an identical array except that character arrays within it are
either folded for case-less comparison, or mapped to upper or lower case.

For a discussion of case folding and case conversion (mapping), see
https://unicode.org/faq/casemap_charprop.html.

If the optional left-argument X is omitted, R is a copy of Y with character arrays
folded, for case-less comparison.

If X is specified, the following cases are supported:

X Description

1 R is a copy of Y with character arrays mapped to upper case.

¯1 R is a copy of Y with character arrays mapped to lower case.

¯3
R is a copy of Y with character arrays folded, for case-less comparison
(this is equivalent to monadic use).

Examples

⎕C 42 'Pete' 'Πέτρος'
42 pete πέτροσ

1 ⎕C 42 'Pete' 'Πέτρος'
42 PETE ΠΈΤΡΟΣ

¯1 ⎕C 42 'Pete' 'Πέτρος'
42 pete πέτρος

(⊂'pete'){⍺≡⎕C ⍵}¨'PETE' 'Pete' 'pEte'
1 1 1

Example

Greek has two forms of lower-case Sigma, namely "σ" and "ς" but a single upper-
case Sigma "Σ". Each lower-case form remains unchanged when mapped to lower-
case, but both fold to "σ", while "Σ" is mapped to lower-case "σ" .

⎕C 'ίσως'
ίσωσ

1 ⎕C 'ίσως'
ΊΣΩΣ

¯1⎕C 1 ⎕C 'ίσως'
ίσωσ

Note:

Refs in Y are not followed but just returned unchanged.

Chapter 3: Language Reference Changes 43

Date-time R←X ⎕DT Y

This function validates date-times or converts date-times between one format and
another.

A date-time is a date and time of day represented by a timestamp, a time number
or a military time-zone character.

l A timestamp is a date-time expressed as a multiple element numeric vector,
of which there are several different sorts (principally ⎕TS format).

l A time number is a date-time expressed as a scalar numeric value, of which
there are several different sorts.

l A military time zone character is a scalar character that represents the
current date-time ("now") in a particular time zone. For example, 'A'
represents the current date-time (UTC) + 1 hour.

Y is an array of any shape whose elements contain a timestamp, time number or
military time zone character, in any combination.

X may be a single integer value or a 2-element integer vector.

When X is a single integer value, it must be either 0 or a date-time code listed in
the tables below. 0 specifies that the elements of Y are to be validated. A non-zero
value specifies the date-time representation to which the elements of Y are to be
converted. In this case, the numeric elements of Y are interpreted as follows:

l scalars are assumed to be time numbers of type Dyalog Date Number (code
1)

l vectors are assumed to be ⎕TS timestamps (code ¯1)

When X is a 2-element integer vector, X[1] is a date-time code that explicitly
specifies the date-time representation of the numeric elements in Y. X[2] is either
0 or a date-time code listed in the tables below. 0 specifies that the elements of Y
are to be validated. A non-zero value specifies the date-time representation to
which the elements of Y are to be converted.

Character scalars in Y are always interpreted as meaning "now".

R is an array of the same shape as Y, where each element is either a timestamp,
time number or Boolean value as determined by the second or only element in X.

Note: time numbers in R may be of type DECF even if ⎕FR is 645 if their
magnitude can be too great to store precisely in a double. See the table below for
the type numbers where this is so.

Chapter 3: Language Reference Changes 44

Time Numbers
If a value in X is positive it indicates that a time number type is expected in Y or
generated in R, as follows. Note that the last column indicated whether (Yes) or
not (No) negative numbers are allowed.

Code Description Category Epoch1 Neg8

1 Dyalog Date Number

Day count
with
fractional
part

1899-12-31 00:00 Yes

2 Dyalog component time
Tick count
1/60thsec
ticks2

1970-01-01 00:00 Yes

10 J (J nanosecond time) Tick count
1ns ticks2 2000-01-01 00:00 Yes

11 Shakti K Tick count
1ms ticks2 2024-01-01 00:00 Yes

12 Javascript / D / Q Tick count
1ms ticks2 1970-01-01 00:00 Yes

13 R (R chron format)

Day count
with
fractional
part

1970-01-01 00:00 Yes

20 Unix time Tick count
1s ticks2 1970-01-01 00:00 Yes

30 Microsoft DOS date/time

Encoded
broken-
down time
2s resolution

N/A No

31 Microsoft Win32
FILETIME

Tick count3
100ns ticks 1601-01-01 00:00 No

32
Microsoft CLR DateTime
(.NET)(Ticks property
thereof)

Tick count3
100ns ticks 0001-01-01 00:00 No

33
Microsoft OLE
Automation Date(also
known as Variant Time)

Day count
with
fractional
part

1899-12-30 00:00 Yes7

Chapter 3: Language Reference Changes 45

Code Description Category Epoch1 Neg8

40 Excel (1900 Date
System)4 / Lotus 1-2-3

Day count
with
fractional
part5

1899-12-31 00:006 No

41 Excel (1904 Date
System)4

Day count
with
fractional
part

1904-01-01 00:00 No

42 Stata statistics package Tick count
1ms ticks2 1960-01-01 00:00 Yes

43 SPSS statistics package Tick count
1s ticks2 1582-10-14 00:00 No

44 SAS Tick count
1s ticks2 1960-01-01 00:00 Yes

50 Julian Date

Day count
with
fractional
part

¯4714-11-24 00:00 No

51 J (J dayno)

Day count
with
fractional
part

1800-01-01 00:00 No

52 Reduced Julian Date

Day count
with
fractional
part

1858-11-16 12:00 Yes

53 Modified Julian Date

Day count
with
fractional
part

1858-11-17 00:00 Yes

54 Dublin Julian Date

Day count
with
fractional
part

1899-12-31 12:00 Yes

55 CNES Julian Date

Day count
with
fractional
part

1950-01-01 00:00 Yes

Chapter 3: Language Reference Changes 46

Code Description Category Epoch1 Neg8

56 CCSDS Julian Date

Day count
with
fractional
part

1958-01-01 00:00 Yes

60

Floating-point decimal
encoded format9
Digits take the form
yyyymmdd.hhmmss

Encoded
broken-
down time
1s resolution

N/A No

61

Integer decimal encoded
format9
Digits take the form
yyyymmddhhmmss (J digit
time)

Encoded
broken-
down time
1s resolution

N/A No

Footnotes

1. In the Proleptic Gregorian Calendar.
2. There are the same number of ticks per day regardless of leap seconds.
3. Generated as DECF values regardless of the setting of ⎕FR due to their

magnitude.
4. Excel supports two time number conventions. On Windows the 1900 Date

System is the default and on macOS the 1904 Date System is the default.
Both systems can use either convention and the convention in use is stored
in the worksheet so that the platforms interoperate.

5. Count includes the invalid date 1900-02-29.
6. Microsoft Excel converts day 0 to the invalid date 1900-01-00.
7. For negative numbers, the integral part counts backward from 1899-12-30

and the fractional part counts forward from the date so reached.
8. No date-time may represent a date earlier than ¯4713-01-01 00:00.
9. Decimal encoded formats encode human-readable dates and times into a

single number with the most significant part in the most significant decimal
digit, for example 2020/01/23 (year/month/day) is encoded as 20200123,
and 13:17:56 (hour:minute:second) is encoded as 131756. The date must be
between 1 January 0001 and 28 February 4000 in the Proleptic Gregorian
Calendar.

Chapter 3: Language Reference Changes 47

Timestamps
If a value in X is negative it indicates that a timestamp type is expected in Y or
generated in R, as follows:

Code Description Max
elements Element contents1

Elided
element
implicit
values (in Y)3

¯1
Millisecond
precision (⎕TS) 7

Year, month, day-of-
month, hour, minute,
second, millisecond

1 1 1 0 0 0 0

¯2
Microsecond
precision 7

Year, month, day-of-
month, hour, minute,
second, microsecond

1 1 1 0 0 0 0

¯3

Nanosecond
precision (J
expanded digit
time)

7
Year, month, day-of-
month, hour, minute,
second, nanosecond

1 1 1 0 0 0 0

¯10
ISO day-of-year
components 6

Year, day-of-year, hour,
minute, second,
microsecond

1 1 0 0 0 0

¯11
ISO day-of-week
components 7

Year, week, day-of-
week, hour, minute,
second, microsecond

1 1 1 0 0 0 0

¯20
Decimal encoded
date and time2 2 Decimal encoded date,

decimal encoded time 10101 0

Footnotes

1. All dates must be between 1 January 0001 and 28 February 4000 in the
Proleptic Gregorian Calendar.

2. Decimal encoded formats encode human-readable dates and times into a
single number with the most significant part in the most significant decimal
digit, for example 2020/01/23 (year/month/day) is encoded as 20200123,
and 13:17:56 (hour:minute:second) is encoded as 131756.

3. If a timestamp has fewer than the maximum number of elements, the
remaining elements take the default values shown.

Chapter 3: Language Reference Changes 48

Military time zone characters
Any element in Y may be specified as a military time zone character and is
implicitly replaced by the current time in the time zone they represent. The time
zones are as follows:

Character Time zone name Time zone

A Alpha UTC +1

B Bravo UTC +2

C Charlie UTC +3

D Delta UTC +4

E Echo UTC +5

F Foxtrot UTC +6

G Golf UTC +7

H Hotel UTC +8

I India UTC +9

J Juliet Local time

K Kilo UTC +10

L Lima UTC +11

M Mike UTC +12

N November UTC -1

O Oscar UTC -2

P Papa UTC -3

Q Quebec UTC -4

R Romeo UTC -5

S Sierra UTC -6

T Tango UTC -7

U Uniform UTC -8

V Victor UTC -9

W Whisky UTC -10

X X-ray UTC -11

Y Yankee UTC -12

Chapter 3: Language Reference Changes 49

Character Time zone name Time zone

Z Zulu UTC +0

Note that the resolutions of system clocks vary by platform.

Examples: Timestamp to time number conversion

¯1 1 ⎕DT ⊂⎕TS
43886.48039

1 ⎕DT ⊂⎕TS
43886.48039

1 ⎕DT ⎕TS 'J'
43886.48039 43886.48039

1 ⎕DT ⊂⍬ ⍝ cf Elided element implicit values
¯693594

1 ⎕DT ⊂1 1 1 0 0 0 0
¯693594

Examples: Time number to timestamp conversion

1 ¯1 ⎕DT 0 43508.42843
┌──────────────────┬──────────────────────┐
│1899 12 31 0 0 0 0│2019 2 13 10 16 56 352│
└──────────────────┴──────────────────────┘

¯1 ⎕DT 0 43508.42843
┌──────────────────┬──────────────────────┐
│1899 12 31 0 0 0 0│2019 2 13 10 16 56 352│
└──────────────────┴──────────────────────┘

2 ¯1 ⎕DT 3⊃⎕FRDCI 1 1
┌──────────────────────┐
│2020 2 26 11 33 54 466│
└──────────────────────┘

Examples: Time number to time number conversion

2 1 ⎕DT 3⊃⎕FRDCI 1 1
43886.48188

1 ⎕DT 'J'
43886.48371

⍝ Local time is UTC-05:00
3600÷⍨-/20 ⎕DT 'JZ'

¯5

Example: Validation

0 ⎕DT ⎕TS (2020 13 1) 'J' 'DT' #
1 0 1 0 0

Chapter 3: Language Reference Changes 50

Format Date-time R←X(1200⌶)Y

Y is a numeric array of any shape, where every element contains a Dyalog Date
Number that represents a date between 1 January 0001 and 28 February 4000 in
the Proleptic Gregorian Calendar.

X is a character scalar or vector specifying a pattern with which the elements in Y
should be formatted.

R is an array of the same shape as Y, whose elements are enclosed character
vectors.

Formatting Pattern in X
The formatting pattern allows a time number to be converted to a highly user-
configurable, plain text format. When a time number is formatted, elements in the
result are copies of the format pattern with format sequences replaced by the
elements they represent.

The format sequences are intended to be visually reminiscent of the generated text.
They use alphabetic characters easily associated with the substitution (e.g. D, M and
Y for Day, Month and Year respectively) repeated one or more times to indicate
format. As noted below, some sequences allow the first character to be replaced by
a _, or the casing to be altered.

Format letter Length Meaning Variations Example

Year
YY Without century YY 19

YYYY With century YYYY 2019

Month

M 1 or 2 digit numeric M 3

MM 2 character numeric MM
_M

03
3

MMM Abbreviated name

MMM
Mmm
mmm
_mm1

MAR
Mar
mar
Mar

MMMM Full name

MMMM
Mmmm
mmmm
_mmm1

MARCH
March
march
March

Chapter 3: Language Reference Changes 51

Format letter Length Meaning Variations Example

Day of month
D 1 or 2 digit numeric D 4

DD 2 character numeric DD
_D

04
4

hours
h 1 or 2 digit numeric h 8

hh 2 character numeric hh
_h

08
8

minutes
m 1 or 2 digit numeric m 5

mm 2 character numeric mm
_m

05
5

seconds
s 1 or 2 digit numeric s 0

ss 2 character numeric ss
_s

00
0

fractional seconds

f 1 digit precision f 5

ff 2 digit precision ff 55

fff 3 digit precision fff 555

ffff 4 digit precision ffff 5555

fffff 5 digit precision fffff 55555

ffffff 6 digit precision ffffff 555555

day of week

d Numeric (1-7) d 1

ddd Abbreviated name

DDD
Ddd
ddd
_dd1

MON
Mon
mon
Mon

dddd Full name

DDDD
Dddd
dddd
_ddd1

MONDAY
Monday
monday
Monday

ISO week number
w 1 or 2 digit numeric w 10

ww 2 character numeric ww
_w

10
10

year of ISO
Week
number2

WW Without century WW 19

WWWW With century WWWW 2019

Chapter 3: Language Reference Changes 52

Format letter Length Meaning Variations Example

day of year
y 1 to 3 digit numeric y 63

yy 3 character numeric yy
_y

063
63

Ordinal indicator3
for day of month

O Short O
o

T
t

OO Full
OO
Oo
oo

TH
Th
th

hours in twelve
hour clock

t 1 or 2 digit numeric t 8

tt 2 character numeric tt
_t

08

AM/PM Indicator
P Short P

p
A
a

PP Full PP
pp

AM
am

Footnotes

1. Natural sentence case, which may be specified for M (month name) and d
(day name) only, causes the text to be substituted in the case which is
natural for the language; some languages (e.g. English) always capitalise the
first letter of day and month names whereas others (e.g. French) do not.

2. Dates at the start of the year may be in the final week of the previous year,
and dates at the end of the year may be in the first week of the following
year.

3. An ordinal indicator is a character or group of characters following a
numeral, such as (in English) the suffixes -st, -nd, -rd, -th as in 1st, 2nd, 3rd,
4th.

1. Natural sentence case, which may be specified for M (month name) and d
(day name) only, causes the text to be substituted in the case which is
natural for the language; some languages (e.g. English) always capitalise the
first letter of day and month names whereas others (e.g. French) do not.

2. Dates at the start of the year may be in the final week of the previous year,
and dates at the end of the year may be in the first week of the following
year.

3. An ordinal indicator is a character or group of characters following a
numeral, such as (in English) the suffixes -st, -nd, -rd, -th as in 1st, 2nd, 3rd,
4th.

Chapter 3: Language Reference Changes 53

The upper and lower case letters, underscore _, dollar $ and percent % are all
reserved for introducing format sequences, even though not all currently have
meaning. The remaining, non-reserved, characters are copied to the result
unchanged, thus the format string hh:mm represents the hour of the day and
minute of the hour with a colon between (e.g. 12:00). All characters or sequences
of characters may be delimited by " or ' at any point in the format string to
prevent them being interpreted as a part of a format sequence, and, within these
delimiters, two adjacent delimiter characters produce a single delimiter.

Note: The characters AaaaBbbb consist of two adjacent format sequences because
there is a sequence of As followed by a sequence of Bs. The characters AaaaAaaa
consist of one format sequence because it only contains As. It can be separated into
two format sequences by insering an empty " or ' - delimited string, e.g.
Aaaa""Aaaa.

Language
Unless overridden, English is used for text substitutions. Different languages may
be selected using the Language variant option and/or the use of language
specifiers within the format pattern. In either case, the language is specified as
either a two letter ISO 639-1 language code in lower case (e.g. en) or as a five
character language with an additional underscore and two character region in
upper case (e.g. en_GB). Within the format pattern, __xx__ (where xx is the two or
five character specifier) will switch the language of the subsequent generated text.
Dictionaries for the following languages are built in:

ISO 639-1 Language

da Danish

de German

el Greek

en English

es Spanish

fi Finnish

fr French

it Italian

ja Japanese

nb Norwegian Bokmål

nl Dutch

nn Norwegian Nynorsk

Chapter 3: Language Reference Changes 54

ISO 639-1 Language

pl Polish

pt Portuguese

ru Russian

sv Swedish

zh Chinese

Predefined patterns
Any pattern can contain (in part or in whole) a named predefined pattern, which
allows common date and time formats to be specified in abbreviated form.
Predefined patterns may be specified on a per-language basis, allowing patterns to
be tailored for the selected language.

Predefined patterns are included in a pattern using % delimiters. For example,
%ISO% includes the named predefined pattern ISO.

The following global predefined pattern is built in:

Name Substitutes as

ISO1 YYYY-MM-DD"T"hh:mm:ss

1. An ISO 8601 extended format calendar date and time with no time zone
designator.

This list may be expanded in future.

Additional predefined patterns may be defined using the Dictionary variant
option. Predefined patterns must not contain references to other predefined patterns.

Variant Options
The Language variant option specifies the language used for formatting datetimes
and defaults to 'en' (English). The option value is a two or five character name
(e.g. 'en' or 'en_GB'). The setting may be explicitly overridden in the format
pattern.

The Dictionary variant option specifies a namespace which contains additional or
replacement names for the months etc. and/or predefined patterns, for languages
and language regions.

At the top level there may be zero or more sub-namespaces with two or five
character names, according to the rules for language and language regions. Within
each of these, month names etc. are defined as follows:

Chapter 3: Language Reference Changes 55

Named item Description

MonthNames
A twelve-element vector of character vectors
containing the full names corresponding to January
to December, respectively.

ShortMonthNames
A twelve-element vector of character vectors
containing the short names corresponding to Jan to
Dec, respectively.

WeekdayNames
A seven-element vector of character vectors
containing the full names corresponding to Monday
to Sunday, respectively.

ShortWeekdayNames
A seven-element vector of character vectors
containing the full names corresponding to Mon to
Sun, respectively.

MorningAfternoon
A two-element vector of character vectors
containing the names corresponding to AM and
PM, respectively.

Ordinals

A character vector containing the one ordinal used
for all numbers in the range 1 to 31, or a thirty one-
element vector of character vectors containing the
ordinals for 1 to 31, respectively.

Also at the top level of the dictionary namespace there may be a sub-namespace
named Patterns and within this further sub-namespaces named Global and/or two
or five character language names, containing definitions of predefined patterns.
Predefined patterns are defined in the same way as the formatting pattern except
that they may not contain references to other predefined patterns.

If the namespace contains a definition which is supplied built into the interpreter,
it replaces the built-in one.

If a dictionary is incomplete (e.g. is missing one of the expected named items, or
one of the named items contains too few elements) an error is signalled only if the
missing content would actually be needed.

Chapter 3: Language Reference Changes 56

Example dictionary

The following creates a dictionary defined by the namespace dict using JSON
text. See the formatting examples below for uses of this dictionary.

dict_json
{
"Patterns": {
"Global": {
"ISOweek": "YYYY-'W'ww",
"DateCompact": "D-MMM-YYYY",
"DateVerbose": "'the date is' DD _mm YYYY"

},
"fr": {
"DateVerbose": "'la date est le' DD mmm YYYY"

},
"en_US": {
"DateVerbose": "'the date is' Mmm DD, YYYY"

}
},
"en_US": {
"ShortMonthNames": [
"Jan.", "Feb.", "Mar.", "Apr.", "May", "June",
"July", "Aug.", "Sept.", "Oct.", "Nov.", "Dec."

]
},
"cy": {
"MonthNames": [
"Ionawr", "Chwefror", "Mawrth", "Ebrill", "Mai", "Mehefin",
"Gorffennaf", "Awst", "Medi", "Hydref", "Tachwedd",

"Rhagfyr"
],
"ShortMonthNames": [
"Ion", "Chw", "Maw", "Ebr", "Mai", "Meh",
"Gor", "Awst", "Medi", "Hyd", "Tach", "Rhag"

],
"WeekdayNames": [
"Dydd Sul", "Dydd Llun", "Dydd Mawrth", "Dydd Mercher",
"Dydd Iau", "Dydd Gwener", "Dydd Sadwrn"

],
"ShortWeekdayNames": [
"Sul", "Llun", "Maw", "Mer", "Iau", "Gwen", "Sad"

],
"MorningAfternoon": [
"yb", "yh"

],
"Ordinals": [
"af", "il", "ydd", "ydd", "ed", "ed", "fed", "fed", "fed",
"fed", "eg", "fed", "eg", "eg", "fed", "eg", "eg", "fed",
"eg", "fed", "ain", "ain", "ain", "ain", "ain", "ain",
"ain", "ain", "ain", "ain", "ain"

]
}

}
dict←⎕JSON dict_json

Chapter 3: Language Reference Changes 57

Note the following:

l In the example, the predefined pattern ISOweek is defined globally and is
not redefined. It therefore has the same value for all languages. Similarly,
DateCompact has the same value for all languages, but although the
definition is global, it contains the pattern MMM and this will be substituted
with the month name in the selected language.

l The predefined patterns DateVerbose is defined globally, and redefined
for languages fr and en_US. The global definition will be used when any
language other than fr and en_US is selected. If there was not global
definition it would only be defined for fr, all regional variations of fr,
and en_US.

l There is no explicit definition of patterns or names for language region en_
GB. If this language is selected the definitions for en will be used.

l There is an explicit definition for ShortMonthNames for language region
en_US. If this language is selected the definition of ShortMonthNames
is as defined, and as for en for other names. As en is not defined in the
dictionary, the built-in defaults are used.

In the following examples:

tn←1 ⎕DT ⊂2019 2 13 10 16 56
tn

43508.42843

English

'Dddd, DDoo Mmmm YYYY; hh:mm:ss' (1200⌶) tn
Wednesday, 13th February 2019; 10:16:56

'__en__Dddd, DDoo Mmmm YYYY; hh:mm:ss' (1200⌶) tn
Wednesday, 13th February 2019; 10:16:56

'"ISO date": %ISO%' (1200⌶) tn
ISO date: 2019-02-13T10:16:56

'%DateVerbose%'(1200⌶⍠'Dictionary'dict) tn
the date is 13 Feb 2019

English (US)

fmt←'%DateVerbose%'
fmt (1200⌶⍠('Dictionary'dict)('Language' 'en_US'))tn

the date is Feb. 13, 2019

Chapter 3: Language Reference Changes 58

Danish

'__da__Dddd, DDoo mmmm YYYY; hh:mm:ss' (1200⌶) tn
Onsdag, 13. februar 2019; 10:16:56

fmt←'Dddd, DDoo mmmm YYYY; hh:mm:ss'
fmt(1200⌶⍠'Language' 'da') tn

Onsdag, 13. februar 2019; 10:16:56

Welsh (using the dictionary defined above)

fmt←'__cy__Dddd, DDoo mmmm YYYY; hh:mm:ss'
fmt (1200⌶⍠'Dictionary' dict) tn

Dydd Mercher, 13eg chwefror 2019; 10:16:56

'__cy__%DateVerbose%' (1200⌶⍠'Dictionary' dict) tn
the date is 13 Chw 2019

Chapter 4: Object Reference Changes 59

Chapter 4:

Object Reference Changes

ExecuteJavaScript Method 839

Applies To: HTMLRenderer

Description

This method is used to execute JavaScript in a HTMLRenderer object.

The argument to ExecuteJavaScript is a single item as follows:

[1] Code character vector containing JavaScript code

Example

hr.ExecuteJavaScript 'alert("Hello")'

InterceptedURLs Property

Applies To: HTMLRenderer

Description

The InterceptedURLs property is a 2-column matrix that specifies whether the
HTMLRenderer will attempt to satisfy a request for a resource from the workspace
or, via the CEF, from the internet. If directed to the workspace, the request will
trigger an HTTPRequest event if the protocol is http, or a WebSocketUpgrade
event if the protocol is ws.

The first column is a wild-carded character scalar or vector containing a pattern to
match. The second column is numeric indicating whether or not the
HTMLRenderer should trigger an event as shown in the table below.
InterceptedURLs may contain any number of rows.

Chapter 4: Object Reference Changes 60

Value Meaning

0 Ignore request; pass to CEF for fulfilment

1 Trigger an HTTPRequest or WebSocketUpgrade (automatic) in the
workspace

2 Trigger an HTTPRequest or WebSocketUpgrade (manual) in the
workspace

If the requested url is a relative rather than an absolute URL, it is prepended by the
string http://dyalog_root/. So, for example, if the HTML property contains
:

<link rel="stylesheet" href="style.css">
<script src="app.js"></script>

the HTMLRenderer will request http://dyalog_root/style.css and
http://dyalog_root/app.js respectively.

When the value of InterceptedURLs is its default ((0 2⍴'') it is treated as if it
were set to ((1 2⍴'*://dyalog_root/*' 1). So by default, requests for a
relative URL will fire an event in the workspace while absolute URL will be
directed by the CEF to the internet.

Note that if code in the page creates a web socket intended for internal use, with
anything other than dyalog_root as the URL, the URL must match a pattern in
InterceptedURLs with 1 in the second column. The following example does not
require a matching pattern in InterceptedURLs.

// Create a new WebSocket.
window.socket = new WebSocket('ws://dyalog_root/');

Examples:

The following will trigger an event for all requested URLs.

InterceptedURLs ← 1 2⍴'*' 1

The following will attempt to retrieve from the net URLs containing
'.dyalog.com' and trigger an HTTPRequest event for all other requested
URLs.

InterceptedURLs ← 2 2⍴'*.dyalog.com*' 0 '*' 1

Chapter 4: Object Reference Changes 61

WebSocketUpgrade Event 841

Applies To: HTMLRenderer

Description

This event is reported when the client component of an HTMLRenderer object
opens a WebSocket and the requested URL matches a pattern specified by the
InterceptedURLs property. If there is no match, the connection request is processed
as an external request by the Chromium Embedded Framework (CEF)1.

The event message reported as the result of ⎕DQ, or supplied as the right argument
to your callback function, is a 6-element vector as follows:

[1] Object ref or character vector

[2] Event 'WebSocketUpgrade' or 841

[3] ID Character vector containing the ID of the WebSocket

[4] URL The requested URL of the WebSocket

[5] Headers ASCII including CRLF

[6] Type Character vector 'auto' or 'manual'

The protocol for establishing the connection is defined by InterceptedURLs and is
reported by the 6th element (Type) of the event message.

If Type is 'auto', the protocol is handled internally and this event is reported
when the connection has already been made. Should the connection fail, a
WebSocketError event will be reported instead.

If Type is 'manual', a callback function for WebSocketUpgrade is mandatory
and is responsible for completing (or denying) the connection. This is achieved by
setting the 5th element of the event message (Headers) to indicate an appropriate
positive or negative response to the request2 and returning the entire event
message as its result. If a valid response is not generated in this way, the
connection will time-out causing a WebSocketError event.

In both cases, the WebSocket ID is subsequently required to send a message by
calling the WebSocketSend method or to close the connection using the
WebSocketClose method.

Note that several WebSocket connections may be made concurrently.

1https://en.wikipedia.org/wiki/Chromium_Embedded_Framework
2https://tools.ietf.org/html/rfc6455#section-1.3

Chapter 4: Object Reference Changes 62

Example
┌→──┐
│ ┌→───────────────┐ ┌→──────────────┐ ┌→──────────┐ │
│ #.hr │WebSocketUpgrade│ │5d61d8330065608│ │ws://myapp/│ │
│ └────────────────┘ └───────────────┘ └───────────┘ │
└∊──┘

Index 63

Index

.

.NET Core 25

A

ActiveX control 33
APL_TextInAplCore parameter 25

B

beside operator 36
bind operator 37
bridge dll 31, 34
Bug Fixes 13

C

case convert 14
Classic Edition 36, 38
COM server

in-process 32
out-of-process 31

configuration files 4, 25
configuration parameters 23
constant operator 38
currying 37

D

date-time 43
dyadic primitive functions

partitioned enclose 40
dyadic primitive operators

beside 36
bind 37

Dyalog_LineEditor_Mode 7
Dyalog_NETCore parameter 25

dyalognet dll 31, 34
DyalogStartSE Parameter 21-22
DyalogStartup parameter 21

E

environment variables 23
Events

WebSocketUpgrade 61
ExecuteJavaScript 59

F

file associations 23
format date-time 50

G

GetEnvironment method 24
global assembly cache 31

I

i-beam
format date-time 50

InterceptedURLs 59
Interoperability 16

K

Key Features 1
key operator 18

L

load parameter 12
lx parameter 12

M

Methods
ExecuteJavaScript 59

mixe extension 8

Index 64

monadic primitive functions
unique mask 39

monadic primitive operators
constant 38

multiline input 7

N

namespaces
serialisation 10

nest 18
Net assembly 33

O

over operator 18

P

partitioned enclose function 40
with axis 40

primitive operators
beside 36
bind 37
constant 38

Properties
InterceptedURLs 59

R

rank operator 18
regex 9
Regexp option 9
replace operator

Regexp 9
run-time

applications 29
bound 31
stand-alone 31
workspace based 30

run-time dll 33-34
run-time exe 30, 32

S

search operator
Regexp 9

session
initialisation 21

session initalisation 21
stencil operator 18
System Requirements 15

U

Unicode Edition 12
unique mask function 39

V

variant operator 18

W

WebSocketUpgrade 61
where 18
where extension 8

	Chapter 1: Highlights
	Key Features
	Introducing Configuration Files
	Multi-line Session Input
	Extension to Where
	Extensions to Mix
	Regex Variant Option
	Serialising Namespaces
	Load
	LX

	Bug Fixes
	Announcements
	System Requirements
	Interoperability

	Chapter 2: Configuration
	Session Initialisation
	File Associations
	Configuration Parameters
	New Configuration Parameters
	Dyalog_NETCore
	APL_TextInAplCore

	Configuration Files
	Run-Time Applications and Components

	Chapter 3: Language Reference Changes
	Language Changes
	Atop
	Beside
	Bind
	Constant
	Over
	Unique Mask
	Partitioned Enclose
	Case Convert
	Date-time
	Format Date-time

	Chapter 4: Object Reference Changes
	ExecuteJavaScript
	InterceptedURLs
	WebSocketUpgrade

	Index

